caBIG Architecture Workspace Participant Form

Please complete this form in advance of the caBIG kickoff meeting and return by e-mail to adamsm@mail.nih.gov. Completed forms will be made available to all participants in advance of the meeting to enhance workspace discussions. You should also use this worksheet to structure your presentation. This presentation should be kept to 20 minutes, so be brief! Additional materials you would like reviewed but will not have time to present can be submitted in advance to the email address above and we will see that it is made available to the other Workspace participants.

1.
Sponsoring Cancer Center: University of Pittsburgh Cancer Institute
2.
Workspace: Architecture

UPCI personnel:
James Harrison, MD, PhD, Associate Professor, Pathology

Valerie Monaco, PhD, MS, Assistant Professor, Medicine (evaluation)

Sujin Kim, PhD, Research Associate, Pathology (evaluation)

3.
Relevant architecture experience with similar efforts and the technologies that were implemented

Overview

The University of Pittsburgh Cancer Institute is part of the UPMC Health System and shares the IT architecture of that system. The general network is switched 10/100 MB Ethernet with static IP addresses and a firewall/proxy server between the UPMC/UPCI network and the University and external Internet. VPN access into the network is provided through a local commercial ISP. Desktop computers are standardized on Windows 2000, though Linux and Mac (Classic and OSX) devices are used, particularly in genetic research labs. Server computers are primarily a mixture of IBM RS6000 (AIX), Sun Solaris and Windows 2000. Production clinical systems are housed in a primary computing facility maintained by the UPMC Information Services Division. Several secondary facilities are also used for additional systems, including a facility managed by the UPCI housing web servers and research systems.

UPMC uses a home-grown HL7 2.x interface engine (the “message router”) to interface production systems. The interface engine is written in C with embedded Python for flexible internal message processing. The Health System is in the process of implementing a Cerner Millennium Clinical Information System, which provides an integrated clinical data repository and view of inpatient and outpatient clinical data to all clinical areas including the Cancer Institute. The Cerner system incorporates some ancillary systems directly (eg, pharmacy) and is interfaced to 3rd party and legacy ancillary systems through the message router.

UPMC also has a home-grown text archival system called MARS that stores more than 15 years of clinical and administrative patient data. Data is fed to the MARS system through the message router as HL7 messages. Research access to this data is managed through the Clinical Research Information Service, which incorporates a locally-developed proprietary deidentification filter (De-ID) that is pre-approved by local IRBs. Research data is typically supplied as deidentified data extracts that are analyzed on local research systems.

UPCI systems typically interact with their users through their own presentation layers or communicate with other systems via the message router using HL7 messages. Most UPCI systems are implemented in an n-tier configuration with web browsers, java applets or Oracle forms clients as the presentation layer; a mixed population of middleware components based on iPlanet, Java, Oracle Apache services and stored procedures, Oracle forms and Cold Fusion, all running on Windows 2000; and Oracle 9i running on Sun Solaris as the back end.

Specific systems

The UPCI has experience with four systems that may be useful within the caBIG project. These are A) the Clinical Trials Management Application, B) the Tissue Banking System and Organ-Specific Databases, C) the SPIN concept extraction framework and, D) the SPIN peer-to-peer distributed analytical database.

A.
The Clinical Trials Management Application

CTMA is a mature multi-tiered Java application that has been in production since 2000. The first tier, the client, is an applet constructed from reusable UI framework Swing components, and is accessible via any standard web browser with the Java Plug-in installed. It uses RMI to communicate, via SSLava, to the middle tier. Client authentication security is conducted by iPlanet’s LDAP server and also via Oracle.

The middle tier, the data access server (DAS), is a Java application. The DAS handles all remote calls, using RMI to exposes various generic routines/objects to the client, to managed calls to the database. This runs on a Windows NT machine designated as intranet host (could be any host machine). The DAS uses the Oracle Type 4 Thin SQL driver, with Oracles RC4_56 encryption algorithms to support the JDBC communication between DAS and the Oracle server.

The third tier an Oracle 9i database which resides on a SUN Solaris Unix server.
Component details

CTMA provides functionality in the following component sets:

· Administrative and Regulatory Management

· Clinical Research Management

· Study Parameters

· Financial Management

These components are implemented in the middleware as Java classes. A detailed description of their functionality is available from the summary form submitted to the Clinical Trials workgroup.
Relevant standards

Standards related to data modeling and vocabulary are listed in detail on the summary form submitted to the Clinical Trials Workgroup. Standards related to hardware, software and communication include the following:

	External Data Acquisition
	

	External System
	Method and Usage

	Impac Cancer Registry
	Oracle’s Heterogeneous Services

To display/validate historical diagnosis, treatments, f/u, etc.

Statistical reports (grant funding, trial feasibility)

	CoPath
	Oracle’s Transparent Gateway for Sybase

Not in use at this time, future plans are to display path results within clinical trials

Possible SPIN parsing for diagnosis, other codings

	Ingres
	JAVA/jdbc

Not is use at this time, previously used to send/receive data while in the initial re-engineering phase of clinical trials

	UPMC Enterprise Master Patient Index
	Oracle database link

Used to validate and capture study subject demographics

	NCI CTEP/CDUS
	ftp transmit

For CDUS reporting requirements on clinical trials

	UPCI Scheduling
	UPMC message router (transmit HL7 Scheduling)

Transmit HL7 scheduling records

Radiology/Stentor retrieves these records for pre-fetching of radiology images and reports

	Social Security Death Index
	Quarterly load of ceased to breathe data from CD

Updates patient master with ctb data

	Misys/Sunquest Lab Results
	UPMC message router

Currently working on retrieving HL7 lab records

Size of project installed software base

We currently support 100+ users of the system, at various levels and track over 16,000 patients in more than 250 protocols.

Development Environment (tools, languages, bug tracking, etc.)

IDE: JBuilder 8

Languages: Java, Perl, Coldfusion

Tools:
JClass, SSLava

CM: CVS

Bug tracking: Homegrown (Coldfusion/Oracle)

B.
Tissue Banking and Organ-Specific Databases (OSD)

The OSD is a mature is a mature tissue bank and research data management system that provides inventory and specimen management features as well as organ-specific views of aggregate specimen data.

System design

The OSD is implemented as a multi-layered Java application in Oracle 9i running on a Sun Solaris Server. Web based operations require Oracle Apache Services and http services running on the server. It can also run via servlet-based Java applications.

The first layer is the Schema Layer which holds the actual data and data relations. All data is stored in the form of numbers.

The second layer is the Meta Data Layer in which all data is defined in terms of groups, subgroups, element groups, data elements and valid values. Meta data is dependent on the real world application being supported (breast is different from prostate, tissue banking are different from patient safety applications). Data descriptions such as data attributes(), display attributes(), valid values(), DB Link(), validation rules() and documentation are supported in the meta-data.

The third layer is a set of dynamic procedures/functions (largely written in PL/SQL or Java) which control data transformation at the back end. The procedures accommodate changes in the meta data dictionary layer and immediately reflect the changes in the user interface.

The fourth layer contains the application tools including meta-data dictionary building and mapping, administration, user management, data entry, case display, data query/viewer, etc. Depending on the domain (prostate, breast, etc) these applications will appear different. The appearance is driven by the meta-data.

Connections to operational systems are through database gateways and report parsing.

Role-based security is included in the system which is hosted in a hardened clinical data center

Component Details

The OSD provides functionality in the following component sets:

Basic Tissue Banking Functionality

Meta Data Management and Mapping

Data Extraction from Clinical Systems (Automated Annotation)

These components are implemented primarily as PL/SQL stored procedures in Oracle with data access and display mediated through Oracle Forms at the middle and client layers. A detailed description of the functionality of each component is provided in the summary form submitted to the Tissue Banking workgroup.

Relevant Standards

Nomenclature and Data Element standards are discussed in the summary form submitted to the Tissue Banking workgroup. The application was developed in a standard Oracle environment. Additional technical standards include the following:

System Interfaces

CoPath AP LIS
Oracle Transparent Gateway to Sybase

Social Security Death Index
Quarterly CD from SS.

Mysis AP LIS
FTP Reports with Parsing

Clinical Trials Management System
Oracle Heterogeneous Services

Impac Cancer Registry
Oracle Heterogeneous Services

Size of project installed software base

University of Pittsburgh Health Science Tissue Bank (a distributed tissue bank)

University of Pittsburgh Cancer Registry Research Services

Fifteen other institutions use this software in three major initiatives

Pennsylvania Cancer Alliance Bio-informatics Initiative

Agency for Health Research and Quality Pathology Patient Safety

Collaborative Prostate Cancer Tissue Resource

Development Environment (tools, languages, bug tracking, etc.)

Languages: Java, PL/SQL

Tools: Jclass, Jbuilder, Oracle Tools, Toad

CM: CVS

Bug Tracking: Home Grown

C.
Free Text Concept Extraction (SPIN)
The Shared Pathology Informatics Network (SPIN) is an NCI-supported multi-center development consortium including the University of Pittsburgh, the Regenstrief Institute at the University of Indiana, Harvard University and UCLA. The goal of the project is to create a searchable distributed database of pathology reports with links back to tissue blocks. Such a database would allow statistical analysis of the features of large number of patients with particular tumors as well as access to the stored tissues for research. An important component of creating a useful database from existing free-text pathology reports is the ability to automate concept extraction from, and structuring of, the reports.

As a part of the SPIN project, University of Pittsburgh is developing a modular Java application for concept extraction (including negated concepts) from free text pathology reports. The concepts are currently encoded as UMLS CUIs, but the design of the system allows extension to other coding schemes. This system might form the foundation for other systems to manage free text medical information related to oncology diagnosis, care and treatment.
System design

The concept extraction system is a modular Java application that incorporates GATE, an open source framework for language engineering. The implementation uses a pipeline paradigm where text documents are successively processed by software modules that may be GATE processing resources, JAPE transducers or our own Java applications. The input data is free-text, de-identified pathology reports and the output is an XML document containing a structured pathology report and embedded concept identifiers. The XML document conforms to the standard loading schema developed for the local SPIN database.

Component details

The primary pipeline components include a Java-based report chunker (identifies and marks major report sections), a Gate-based tokenizer (identifies words, phrases, punctuation, etc.), a Java-based UMLS concept tagger (currently uses a simple look-ahead/subsume algorithm based on tokenized phrases, with RMI access to a local UMLS distribution), a negation identifier based on a local NLP algorithm called NegEx, and an XML serializer to emit the structured document for database loading.

Relevant standards

Standards used in this project include UMLS, XML and shared XML schemas developed by the SPIN consortium.

Development environment

Languages: Java

Tools: Jbuilder, Gate

CM: CVS

Bug Tracking: Bugzilla

D.
Peer-to-Peer Distributed Analytical Databases (SPIN)

The SPIN project (see above) intends to implement a distributed database that supports querying for summarized and detailed data on concept-coded pathology reports. The software development and testing effort is shared and software developed as part of the project will be open source. The distributed database and communication software is being developed at Harvard University and tested at the University of Pittsburgh and UCLA. Software of similar architecture could be useful within caBIG to support data sharing between Cancer Centers and the oncology research community, and between specific groups of sites and the NCI.

System design
The distributed database is constructed as a set of database nodes with associated software that supports data loading, querying, data aggregation and system communication. The nodes maintain a peer-to-peer network loosely based on the Gnutella model, using SOAP messaging. A query can be initiated from any node; nodes maintain lists of other nodes on the system, pass queries to known nodes and aggregate returned data. The system will ultimately support two levels of queries: 1) summary-level querying that returns statistical data on the concepts contained by the database and 2) detail-level querying that returns a group of de-identified pathology reports including concept codes and report text. Detail-level querying and submission of requests to specific sites for tissues for research are considered to require demonstration of IRB approval.

Component details
Each institutional node implements an SQL database containing the defined SPIN schema. Current nodes use MySQL, but any database supporting JDBC should be functional. Each node also implements a Java middleware layer and servlet in a Jboss environment. The middleware provides facilities for loading XML-structured pathology reports into the database, communication with peer databases through web services/SOAP, providing user access to the SPIN network, transmitting and receiving queries and aggregating data from multiple other databases.

Size of installed base

The current prototype implementation is running at three sites and responds to queries with summary data in a case-based perspective. The total number of reports in the system is at least several hundred thousand. Current work is focused on extending the database schema to contain registry and other longitudinal data to provide a cased-based view, and implementing detail query responses.

Development environment

Java, MySQL

5.
Lessons learned that could be applied to caBIG

•
Get software into the hands of users/testers as rapidly as possible and elicit feedback.

•
Our first generation tools are functional but need to evolve to fully support the ultimate caBIG architecture.

•
Iteratively modifying functional tools at implementation sites will be challenging.

•
Changes that impact the clinical or administrative workflow will be disruptive; behind-the-scenes changes that standardize communications and modularize architecture may be well-tolerated if workflow is maintained. Thus software with a well-designed workflow may be easier to “develop in place” than software with good standards compliance but poor workflow, and may be a better choice as a basis for development.

•
Developers tend to gravitate to familiar tools. In medical settings, these have not typically included open source. The movement to open source may meet resistance and likely will need encouragement in some locations.

•
Focus when possible on language-agnostic open messaging standards for communication rather than language-specific APIs (consistent with caBIO technical guidelines).

6.
Role you see yourself playing in supporting the domain workspace implementation of Architecture Workspace guidelines

•
Because the UPCI is involved in several domain workgroups, it can offer a useful environment for communication between domain and the cross-cutting workgroups

•
We should be able to facilitate communication from the AWG to local domain project technical staff and provide direct access to feedback from the projects

•
We may be able to facilitate communication between the Architecture and the CDE/Vocabulary cross-cutting workgroups (representatives of both are local at UPCI).

•
We should be able to create integrated feedback to the AWG from domain projects and CDE/Vocab WG as architectural policies and recommendations develop.

•
We can facilitate the initial implementation and testing of architectural recommendations in several production settings for systems under our development

7.
Mechanisms for providing architecture standards and guidance throughout the caBIG project

•
Bi-directional communication between AWG and the domain WGs

-
Position statements and guidelines from AWG to the domain WG

-
Critiques on guidelines returned from domain WG

-
Documentation from ongoing projects, including early docs such as information models and UML diagrams from domain WG to AWG

· Critique of project plans/designs from AWG to domain WG

•
The process and schedule for documenting development (planning and implementation) will be important

-
Should be understood and agreed to by all

•
Communication mechanisms

-
Online asynchronous discussion, conference calls sparingly

-
Online architectural documents and critiques accessible to all WG

-
Periodic meetings of AWG, possibly open source "sprint" style over several days for final development of position papers and recommendations

-
Concurrent meetings or representation at domain WG meetings and CDE/Vocab WG

•
Would it be beneficial to make official connections with other standards organizations (HL7)?

